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Abstract—In this paper, we propose a novel representation
learning framework, named MEGAE, for heterogeneous infor-
mation networks. To investigate the rich semantic information
in heterogeneous information networks, we use metapaths to
complete implicit links between nodes. A graph attention encoder
is further used to learn graph structural information with shared
weight parameters. The attention mechanism, on the other hand,
provides us an intuition of how the representation is learned
and improves the interpretability of our model. Furthermore, a
multitask learning of node classification and link prediction is
trained to achieve more robust generalization ability. To validate
our ideas, extensive experiments on three real-world datasets
show that our model achieves state-of-the-art results on node
classification and link prediction tasks in HINs.

Index Terms—graph neural networks, heterogeneous informa-
tion networks, representation learning

I. INTRODUCTION

Graph-structured data are omnipresent in real-world applica-
tions, e.g., online social networks, bibliographic networks, and
knowledge graphs. Network representation learning aims to
learn low-dimensional node embeddings which encode high-
dimensional graph structural information. Researchers have
found that such low-dimensional embeddings are extremely
useful as input features for downstream graph-based learning
tasks, such as node classification [1], [2], node clustering [3],
[4] and link prediction [5], [6].

To capture graph structural information, classic methods
often depend on graph statistics (i.e. degree and centrality),
graph kernels, or handcrafted features [7]. Many early works
on network representation learning problem resort to matrix
factorization algorithms [8]–[10] for dimension reduction.
Inspired by the successful language model word2vec [11],

many methods learn node embeddings through random walks
on graphs with Skip-Gram models, such as DeepWalk [12],
node2vec [3], and LINE [5]. Recent years have seen a con-
tinuing surge of interest in generalizing deep neural networks
to graph-structured data [2], [13]–[15].

However, these works mainly focus on representation learn-
ing for homogeneous information networks which contain a
single type of entities and relations. Yet most real-world data
can be naturally represented as heterogeneous information
networks (HINs) [16] with various types of entities and
relations. To employ the rich semantic information embedded
in HINs, one popular way is to use the metapaths [17]. A
metapath is a sequence of relational links which represents a
specific semantic relation, and many researchers have found
it beneficial to incorporate metapaths in different data mining
tasks on HINs, like similarity search [18], collective classifica-
tion [19] and recommendation [20]. Recently, many metapath-
guided random walk methods are introduced for learning node
embeddings on HINs, such as metapath2vec [21], HIN2vec
[22] and metagraph2vec [23].

In this paper, we focus on representation learning task on
heterogeneous information networks, which is a challenging
problem due to the following reasons:

Shallow Models: Prevalent random walk based approaches
[21], [24] are shallow embedding models that directly map
nodes to node vectors which are equivalent to embedding
lookup tables. In shallow models, each node embedding vec-
tors is trained independently and there is no parameter sharing
between nodes. This can be statistically inefficient for large
graph because its space complexity is O(|V|).

Multiple Training Steps: The training procedure of existing
models for HINs representation learning is usually divided978-1-7281-0858-2/19/$31.00 © 2019 IEEE
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into two stages [21], [22]. The first stage is to learn node
embeddings through a metapath-guided random walk, and the
second stage is to train another model for different downstream
tasks individually. However, this kind of multi-step training
method can bring more noise and lead to poor training stability
and lower model performance. Further, even though some
methods [2] are trained in an end-to-end way, they are usually
only designed for a single task. We have to modify the model
so as to tackle different tasks.

Lack of Interpretability: Interpretability is crucial for us
to understand how and why a model works. Unfortunately,
a few number of methods try to open the black box behind
their models. In terms of representation learning on heteroge-
neous information networks, existing methods can not tell us
what’s the distinction between each metapaths, or what’s the
difference between different kinds of nodes and links.

To overcome the above-mentioned challenges, we propose
a metapath enhanced graph attention encoder model for rep-
resentation learning on heterogeneous information networks.
In our model, we first add some virtual edges according to
a set of predefined metapaths to capture hidden semantic
information in HINs. Secondly, we use a novel graph attention
encoder to learn graph structural information by focusing on
more relevant nodes in the first-order neighborhood. Lastly,
we use a scoring function as graph decoder for link prediction
and train two different tasks end-to-end simultaneously in a
multitask learning setting. We summary our main contributions
as follows:

1) We propose a unified framework for representation
learning on HINs which uses extensible graph encoders
for learning graph structure information and uses meta-
paths to learn different semantic information.

2) We train our model in a multitask learning procedure
which is suitable for (semi-)supervised learning and
unsupervised learning.

3) For model interpretability, we utilize a graph attention
encoder to visualize the relative importance of different
neighboring nodes.

4) Extensive experiments show that our proposed model
can achieve the state-of-the-art results in node classifi-
cation task and link prediction task.

II. PRELIMINARIES

In this section, we provide some backgrounds and formally
define the problem of presentation learning on HINs.

Definition 1: A heterogeneous information network
(HIN) [17], [18] is defined as G = (V, E) consisting of a set
of nodes V and a set of edges E . The number of node types
|A| > 1 or the number of edge types |R| > 1.

As shown in Figure 1, the citation network involves three
types of nodes, i.e., paper, author and conference, and three
types of links: Author F

write−−−→ Paper C, Paper B
publish−−−−−→

Conference E and Paper C
cite−−→ Paper A.

Definition 2: A metapath [17], [19] P is a sequence of
objects linked by relations in the form of V1 π1−→ V2 π2−→

Paper B

Conference E

Paper A

Paper D

Paper C

cite

Co-citation
Same Conference

Author F

Same Author
write−1

write

publish
publish−1cite

Fig. 1. A citation network with multiple types of nodes and edges.

· · · Vt πt−→ πt+1 · · ·
πl−1−−−→ Vl, where π = π1 ◦ π2 ◦ · · · ◦ πl−1

denotes the composite relations between node types V1 and
Vl,Vi ∈ V.

Metapaths can be viewed as implicit links in HINs which
represent specific semantic meanings between two nodes. For

example, in Figure 1, a metapath P
publish−−−−−→ C

publish−1

←−−−−−− P
denotes a composite relationship between paper and con-
ference, and the semantic meaning is that two papers are
published in a same conference.

Definition 3: Heterogeneous Information Network Em-
bedding. The goal of representation learning on HINs G(V, E)
is to learn a mapping funtion fv : V → R

dv or fe : E → R
de

which maps node features or edge features to a dense low
dimensional vector (dv � |V|) or (de � |E|). These
learned low dimension embeddings are then inputted to various
downstream data mining tasks in HINs, like classification,
clustering or link prediction [21], [22].

III. METHODOLOGY

We introduce a general framework, named MEGAE
(Metapath Enhanced Graph Attention Encoder), for hetero-
geneous information networks representation learning.

A. Metapath-based Virtual Edges

Semantic meaning relations are implicit and mingled in
HINs, and how to exactly capture disparate semantic meaning
relations between nodes is a challenging task. Unlike some
previous methods [25] which convert HINs to a multi-channel
network, MEGAE adds metapath-based virtual edges directly
to the original graph to capture the hidden semantic infor-
mation. Further, our method explicitly uses an edge feature
to express the semantic information of the metapath. A toy
HIN with eight nodes and three predefined metapaths (MP1,
MP2, MP3) is illustrated in Figure 2. For example, node 1
and node 2 are connected with MP1 and MP3, so that we
add two virtual edges between node 1 and node 2. Note that
as we allow two nodes to be connected with multiple types
of edges, we can express each edge as a one-hot vector, like
edge feature between node 1 and node 2 can be expressed as
e12 = (0, 0, 0, 1, 0, 1).

By adding virtual edges between nodes, we can use edge
features to depict semantic meaning relations straightfor-
wardly. Suppose we have T types of edges, then each edge
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Fig. 2. A toy HIN with three different types of nodes and three different types
of edges. We first define three different metapaths, then we look for nodes
connected with each metapath and add a virtual edge between them. At last,
we will have six different types of edges, and the edge feature between two
nodes can be expressed by a six-dimension vector.

can be defined as an one-hot vector eij ∈ R
T . With the edge

embedding matrix T ∈ R
E×de where de is the dimension of

each edge embedding, we can express the edge embedding �eij
between node i and node j as �eij = Eeij . The edge embedding
matrix E is a parameter which is trained along with the model.

B. Graph Attention Encoder

We denote a HIN as G = (V, E) with nodes vi ∈ V and
edges (vi, eij , vj) ∈ E , where eij is the edge type. Our graph
encoder is motivated by graph attention network (GAT) [15]
which uses attention mechanism to learn node features from
local neighborhoods and focus on the most relevant ones.
It can be understood as a special case of the differentiable
message passing neural networks framework [13]. In the
message passing neural networks framework, the node features
are updated iteratively by two phases, a message aggregating
phase, and a feature update phase.

We denote �h
(l)
i ∈ R

d(l)

as the hidden state of node vi
in the l-th layer of the neural network, with d(l) being the
dimensionality of this layer’s representations. For each node
i, we first use the message aggregation function gm to learn
a message based on its neighbors’ features. The aggregated
message is then passed to an update function with the previous
hidden state to get an updated hidden state:

�m
(l+1)
i =

∑
j∈Ni

gm

(
�h
(l)
i ,�h

(l)
j , �eij

)
(1)

�h
(l+1)
i = Ut

(
�h
(l)
i , �m

(l+1)
i

)
(2)

where Ni denotes the neighbors of node i and �eij is the edge
embedding of the edge between node i and node j.

In our model, we use a variant of graph attention network
(GAT) [15] as the message aggregation function. Figure 4
presents the detail of the graph attention encoder. To learn
graph structural information, we use an attention mechanism
based on node i and its first-order neighbors Ni. For node
i and one of its neighbor node j, we use �x

(l)
j to represent

the neighbor feature of node j in the l-th layer in the
neural network: �x(l)

j = We�eij + Wn
�h
(l)
j , where We is the

linear transformation for the edge embedding and Wn is the

⃗h (l)
1

α12

α13

⃗h (l)
2

⃗h (l)
4

⃗h (l)
5

⃗h (l)
3

⃗e 13

⃗e 15 ⃗e 14

α14α15

⃗e 12

⃗e 11⃗h (l)
1

⃗h (l+1)
1

α15

⃗e 12⃗h (l)
2

⃗e 13⃗h (l)
3

⃗e 14⃗h (l)
4

⃗e 15⃗h (l)
5

Neighbors of Node 1

α14

α13

α12

α11

Fig. 3. A variant of the graph attention network is used as the graph encoder.
An attention mechanism which leverages node features and edge features
helps to focus on the most relevant nodes in the neighborhood.

linear transformation for the node embedding. The attention
coefficients αij between node i and j is calculated by:

α
(l)
ij =

exp(σ(a([�x
(l)
i ||�x

(l)
j ]))

∑
k∈Ni

exp(σ(a([�x
(l)
i ||�x

(l)
k ]))

(3)

where the σ(·) is a nonlinear activation like ReLU function,
a(·, ·) denotes a fully connected layer mapping feature vectors
to a scalar and || is the concatenation operation. For the target
node i, we add a self-loop edge �eii to calculate �x

(l)
i . Once

obtained the attention coefficients, a linear combination of
neighbor features is calculated as the message �m

(l+1)
i for node

i:

�m
(l+1)
i = σ

⎛
⎝∑

j∈Ni

α
(l)
ij �xj

⎞
⎠ (4)

Further, we use an update transformation Wu to calculate new
node embedding for node i with a nonlinear activation (e.g.,
ReLU), and use a linear activation at the output layer:

�h
(l+1)
i = σ

(
Wu · [�h(l)

i ‖�m
(l+1)
i ]

)
(5)

We define a graph attention encoder GAE to represent the
combination of message aggregating phase and message up-
dating phase. To calculate the updated node embedding �h

(l+1)
i

for node i, we input the hidden state �h(l)
i and edge embeddings

�ei,j to the encoder: �h(l+1)
i = GAEl

(
�h
(l)
i ,�h

(l)
j , �eij

)
, j ∈ Ni,

where Ni denotes the neighbors of node i. We use raw node
features as the initial input �h(0)

i .
Intuitively, our graph attention encoder accumulates trans-

formed feature vectors of neighboring nodes through a
weighted sum. We introduce a neighbor feature �x

(l)
j which de-

pends on both of the node embedding and edge embedding. We
utilize the node neighbors to learn graph structural information
and use edge embeddings to learn semantic meaning relations.
In our framework, we stack two layers of the graph attention
encoder to map each node vi ∈ V to a low-dimensional
node embedding zi ∈ R

d. The learned low dimensional latent
node embeddings can then be efficiently applied to different
downstream tasks.
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Fig. 4. A visual illustration of the MEGAE model.

C. Multitask Learning for Node Classification and Link Pre-
diction

Inspired by recent promising results achieved by multitask
learning [26], [27]. We apply a multitask learning setting for
represent learning on HINs, we use node classification task
and link prediction task in our multitask learning framework.

Node classification task aims at predicting labels of nodes,
such as the type of a movie or the category of a book. We can
simply stack two graph attention encoders with a softmax(·)
activation for multi-class classification or a sigmoid(·) ac-
tivation for multi-label classification. We then evaluate the
cross-entropy loss over all labeled nodes in the network:
Lnode = −

∑
i∈Y

∑K
k=1 yik ln zik, where zik denotes the k-th

entry of the encoder output for the i-th labeled nodes, and Y
is the set of nodes with labels. yik is its respective ground
truth label.

Link prediction task attempts to answer the question of how
likely are two nodes being connected. In this paper, we mainly
focus on the structural link prediction problem, where the
task is to predict the likelihood of a missing or unobserved
edge exists between two nodes. To solve the link prediction
problem, we introduce a graph auto-encoder model which is
comprised of above-mentioned graph attention encoder and a
scoring function as a decoder. The decoder uses the output
node embeddings to reconstruct network edges through a
scoring function f : Rd×R

e×R
d → R. Unlike most previous

link prediction methods that use a real-valued vector for each
node vi as parameters and optimize directly during training
process [28], [29], we predict links based on the output from
the graph attention encoder so that our model can leverage
graph structural information to make more precise predictions.
We choose the DistMult factorization [29] as the scoring
function which is known to perform well on link prediction
tasks. For each type of edges, a diagonal matrix Re is used in
DistMult factorization: f(vi, eij , vj) = z�i Rezj .

In the experiments, we select one specific type of original
edges to predict, and we train the link prediction model with
negative sampling. For each observed edge we sample w
negative edges by randomly replace vi or vj in the (vi, eij , vj),

and we use cross-entropy loss to push the model give higher
scores for the positive edges than negative edges:

Ledge = −
∑

(vi,eij ,vj)∈T
y log σ (f(vi, eij , vj)) η+

(1− y) log (1− σ(f(vi, eij , vj)))
(6)

where T is the set of positive triplets (y = 1) and negative
triplets (y = 0), and σ(·) is the sigmoid activation. We define
a weighting factor η = #absent links

#present links in the edge prediction loss
to alleviate the class imbalance problem.

The semi-supervised node classification task and link pre-
diction task are trained simultaneously by sharing the same
encoder output zi. Then the total loss for the multitask learning
problem can be written as the sum of node classification loss,
edge loss, and regularization loss: L = Lnode+Ledge+Lreg .

In addition, we use a similar loss function as in [26] which
can learn different loss weights automatically by considering
the homoscedastic uncertainty of each task. Then the overall
loss can be written as:

L =
1

2σ2
1

Lnode +
1

2σ2
2

Ledge + log σ1 + log σ2 + Lreg (7)

where σ1 and σ2 are two uncertainty coefficients.
Under this multitask learning setting, our model can perform

two tasks at the same time in an end-to-end method. The
losses from different tasks also play a role as an implicit
regularization, which makes the multitask model less likely
to overfit and improve generalization performance.

IV. EXPERIMENTS

A. Datasets

We validate the performance of our model on multi-label
classification task and link prediction task in three real-world
datasets (Table I).

• Movie Dataset: The first dataset is a movie dataset which
contains four different types of nodes and three types of
connections/links as shown in Figure 5(a). For each movie, we
extract a bag-of-words representation of the plot summary as
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(a) IMDB Dataset
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(c) Aminer Dataset

label

Paper
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Author
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authoredBy
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(120)

Movie

3772

Read

Locate

labels

(b) Douban Dataset

Book

2080

User

2080

Location

269

Group

(20)

Fig. 5. Schema of three datasets used in the experiments.

local features. Our target instance type is the movie instance,
which is assigned with multiple genres as labels. In the
experiments, we use three different metapaths: M-A-M, M-
D-M, and U-M-U.

• Douban Dataset: Our second dataset is a book review
dataset which has three types of nodes: book, user and
location, and two types of connections/links: reading link and
locating link. Our target instance type is the user instance,
which is tagged with one or more group labels. The related
network schema is shown in Figure 5(b). In the experiments,
we use two metapaths: U-B-U and U-L-U.

• Aminer Dataset: Our last dataset is a bibliographic
information dataset and the corresponding network schema is
displayed in Figure 5(c). This network includes three types
of nodes and three types of connections/links. We extract a
bag-of-words of the paper title and abstract as local features,
which include 300 words. Our target instance type is the author
instance, which is assigned with one or more research areas
labels. In the experiments, we use two different metapaths:
A-P-A and A-P-V-P-A.

TABLE I
SUMMARY OF EXPERIMENTAL DATASETS

Movie Douban Aminer
# Labels 16 20 8
# Feature 300 - 300

# Node Type 4 3 3
# Link Type 3 2 3
# Instance 12047 5709 58790

B. Compared Algorithms

• metapath2vec [21]: A heterogeneous networks representa-
tion learning method based on metapath-guided random walks.
And metapath2vec++ is a variant of the model based on a
heterogeneous negative sampling technique.

• DeepWalk [12]: A homogeneous networks embedding
method which learns node vectors by capturing node pairs
within w-hop neighborhood via uniform random walks.

• node2vec [3]: A generalized model of DeepWalk which
learns node vectors through parameterized random walks.

• LINE [5]: A homogeneous networks embedding method
which considers both the first(Line1) and second(Line2) order
proximities of nodes in the network separately.

• ESim [24]: A general similarity search framework for het-
erogeneous information networks. ESim learns node vectors
by paths between nodes along a given metapaths.

• Hin2vec [22]: A neural network model for HINs repre-
sentation learning which not only learns node embeddings but
also learns representations of metapaths.

• MEGAE: This is our model proposed in Section 3. In
the experiments, we use the pretrained metapath2vec results
as input node embeddings for the nodes without features.

• MAGAE(single): This is a variant version of our model
which do each task individually.

C. Multi-label classification of Nodes

In this section, we evaluate the models by multi-label
classification of nodes. We first introduce the experimental
setup, including the preparation of labeled datasets, default
parameters of the compared model and the process of classifi-
cation. Then we perform sensitivity experiments on parameters
of MEGAE to determine our default settings. We finally show
the experimental results over three real-world datasets.

1) Experimental Setup: Firstly, given a HIN G we first add
virtual edges to the original network with a set of predefined
metapaths as described in section 3 to get a metapath enhanced
HIN G′. Secondly, we select one of the original edge type
and remove parts of the edges from G′ to keep them unob-
served during training for the link prediction task. For node
classification experiments, we split 80% of the labeled nodes
as a training set, 10% of the labeled nodes as the validation
set and 10% of the rest as the test set. We use micro-f1
score and macro-f1 score as metrics for evaluation. We apply
early stopping with patience of 25, i.e. we stop training if
the evaluation metrics on validation set do not increase for
25 consecutive epochs. In practice, we train the model using
(full-batch) gradient descent techniques with Adam [30] using
a learning rate of 0.01 and weight decay as 1e-5.

In Movie dataset, each movie is labeled by 16 movie genres.
We use all 3772 movies as our target instances. In Douban
dataset, we use 20 groups as user labels to perform user
classification. In Aminer dataset, our target instance is the
author nodes. We use 20 research fields as labels, and each of
the 120 venues is connected with one of the research filed. The
author instance is labeled by the research filed if more than
a quarter of his/her publications are related to the research
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Fig. 6. Parameter Tuning.

fields. We select 5830 authors with at least 10 publications as
our target instances.

Regarding default parameters, the dimensionality of node
vectors, d, is set to 100 for all approaches. The negative
sampling rate w is set to 5. For random walk based methods
include DeepWalk, node2vec, ESim, metapath2vec, we set the
window size to 5, walk length to 100, walks per node to 50.

2) Parameter Tuning in MEGAE: Parameters settings in
MEGAE affect the learned representation and application
performance. To decide the default settings, we vary the values
of important parameters to observe how the micro-f1 changes
in node classification in the networks. The results are shown
in Figure 6.

Hidden dimension. Firstly, Figure 6(a) shows that setting
the number of hidden dimension dh to be 64 is reasonable.
Generally, a small d is not sufficient to capture the information
embedded in relationships between nodes, and a large d tends
to incur overfitting problem.

Output dimension. Figure 6(b) shows the setting of output
dimension do is suitable to choose as 32. We follow a similar
reason for not choosing a large one as for the size of hidden
dimension to avoid overfitting.

Number of sample size. In the experiments, we sample a
certain number of nodes for the graph attention encoder instead
of passing its whole first-order neighborhood. For the sack of
the computational efficiency and performance, we choose the
sample size of the first order neighbors to be 10 and the size
of second order neighbors to be 5.

Based on these results, We use two layer graph attention
encoder in MEGAE, and set the hidden dimension to be 64.
The size of the output dimension is chosen as 32.

3) Evaluation of models: We report the performance of
average Micro-f1 score and Macro-f1 score for node classi-
fication task after 10 runs in Table 2. We can observe from
the result that metapath based methods usually perform better
than homogeneous network representation learning methods,
which proves that it is useful and advantageous to leverage
metapath to capture semantic information in HINs to learn
better representations. In addition, we can find that compared
with the random walk-based models, like metapath2vec and
hin2vec, our model MEGAE achieves better results in all three

Fig. 7. Node classification performancewith on Douban dataset only part of
the training data. Compared with other baselines, MEGAE can learn faster
with fewer samples.

datasets. We argue this this evidence proves the effectiveness
of graph encoder to learn better graph structural information.

Further, we can find that MEGAE always achieves better
results compared with MEGAE(single), which demonstrates
that our multitask learning setting is able to get better gener-
alizatoin ability than single task learning. Figure 7 shows the
result of node classification in Douban dataset with only part of
the training data. The leading performance of MEGAE shows
that our multitask learning method can learn faster with fewer
samples, e.g., MEGAE with 40% training data outperforms all
other baselines with 60% training data on both micro-f1 and
macro-f1. Similar trends holds for the other datasets which is
not shown due to space limitation.

TABLE II
SUMMARY OF EXPERIMENTAL DATASETS

Algorithms Movie Douban Aminer
mi-f1 ma-f1 mi-f1 ma-f1 mi-f1 ma-f1

MEGAE 54.67 43.08 55.16 48.72 95.56 95.36
MEGAE(single) 51.25 41.54 54.34 45.86 95.12 94.82

Hin2vec 54.11 40.12 52.44 45.29 94.16 93.96
metapath2vec 52.09 39.16 52.18 44.80 95.13 94.51

metapath2vec++ 51.56 40.19 51.37 43.39 95.05 94.88
DeepWalk 50.31 38.13 50.93 43.96 92.35 91.74
node2vec 51.92 39.44 51.72 44.53 94.03 93.91

Line1 51.63 39.04 51.44 43.76 91.26 89.42
Line2 51.97 40.35 52.89 42.45 91.34 90.51
ESim 50.15 39.17 52.02 41.51 89.93 89.39

TABLE III
SUMMARY OF EXPERIMENTAL DATASETS

Algorithms Movie Douban Aminer
AUC AP AUC AP AUC AP

MEGAE 74.38 53.24 87.66 76.17 88.49 70.35
MEGAE(single) 74.08 52.65 86.82 74.74 87.79 69.32

Hin2vec 73.47 51.30 84.45 69.38 89.46 69.71
metapath2vec 73.71 50.75 82.16 65.88 85.67 64.57

metapath2vec++ 70.57 51.84 78.65 62.08 84.23 62.02
DeepWalk 70.16 49.20 78.31 62.93 86.83 64.72
node2vec 71.89 51.03 78.12 62.85 80.90 64.56

Line1 70.11 48.99 78.64 61.89 82.02 61.85
Line2 70.22 49.53 79.81 63.08 80.64 56.49
ESim 72.56 51.24 82.57 71.87 80.87 59.56
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D. Link prediction

In this section, we describe the details of our experiments on
link prediction task. We first introduce the experimental setup
including the data preprocessing stage and the metrics for
evaluation. Then we show the experimental results of MEGAE
in link prediction task compared with other models.

1) Experimental Setup: Since our model employs a mul-
titask learning method to train node classification task and
link prediction task at the same time, link prediction task
shares the same input data and output representations as in
the node classification task. To simulate the unobserved edges,
we first select one type of the original edges as the target
link and then generate a sub-network by randomly removing
20% of the target edges from the network, and then drop
the isolate nodes. In order to save time in the training and
inference procedure, we sample w negative edges for each
node in the data preprocessing stage. We choose AUC and AP
as the evaluation metrics. In experiments, we use the output
embeddings of the first encoder layer as input features for link
prediction task.

In movie dataset, our target link is the user-movie link
and predicts which movie is watched by the user. In Douban
dataset, our target link is the user-book link and predicts which
book is read by the user. In Aminer dataset, our target link
is the paper-paper link and predicts which paper is cited by
another paper.

2) Evaluation of models: We report the performance of
average AUC and AP for link prediction task after 10 runs
in Table 3. MEGAE is able to improve performance than the
state-of-the-art models. Compared the results of homogeneous
networks embeddings models with heterogeneous networks
embeddings models, the homogeneous networks embeddings
models sometimes show competitive performance. Which im-
plies in the link prediction task, sometimes the structural
proximity information is strong enough to make a pretty good
prediction. And we can find that our model can always achieve
stable performance in all three different datasets.

E. Visualization

We try to understand how does our model work by visualiz-
ing the attention weights of the graph attention encoder. Here,
we take movie node m1 in Movie dataset as an illustrative
example (Figure 8). For movie node m1, we collect the atten-
tion weight αij from the first layer graph attention encoder. As
we can see in Figure 8, movie m74, actor a265 and director
d54 contribute most to the representation of movie m1. This
observation obeys the intuition that movie m1 is a comedy
movie, actor a265 is a popular comedy actor and director d54
is a director who directs many comedy movies. Compared with
the actor nodes and movie nodes, we can find that the user
nodes have fewer contribution to the movie representation.
This can be explained as these users watched a broad range
of movies, so that they don’t provide enough meaningful
information for learning representation for our target node.
Thanks to the attention mechanism, we can easily comprehend

(b) attention weights of neighbors
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a321

a98

d54

a265

u668
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u765

m32
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0.04

0.06

0.08

0.1

0.12
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m1 m74 m32 u1432 u2253 u765 u668 a321 a265 a98 d54

Fig. 8. Visulization of the attention weights.

how our model learn the node embeddings, and we can locate
abnormality more easily.

V. RELATED WORK

Network Representation Learning. Network representa-
tion learning aims to learn dense low-dimensional vectors for
each node while preserving the original graph structure infor-
mation. There are two kinds of node embedding approaches:
one is the shallow embedding approach like factorization-
based algorithm or random-walk based algorithm which maps
nodes to vector embeddings directly just as a lookup tabel
[10], [12]; the other is the deep embedding approach like
graph neural networks which rely on neural networks to
share weights between nodes and leverage node features
[2]. Hamilton et al [7] introduced a general encoder-decoder
framework for network representation which unifies a number
of existing methods like matrix factorization-based methods,
random-walk based algorithms and graph neural networks.

Graph Neural Networks. Gori et al [31] first introduced
Graph Neural Networks (GNNs) as recursive neural networks.
A few work [2], [32], [33] then began to explore the gener-
alizations of CNNs to graphs. Hamilton et al [14] introduced
GraphSAGE, a framework which allows learning node embed-
dings effectively for the inductive learning task. Inspired by
the success of attention mechanism applied in NLP tasks, [15],
[34] proposed network representation learning models based
on attention mechanisms.

Multitask Learning. Multitask learning aims to leverage
useful information contained in multiple tasks by sharing
representations to improve generalization performance. Com-
mon multitask models can be divided into two categories:
feature-based approach and parameter-based approach [35]. In
a feature-based approach, the same input features are used to
learn a shared feature representation among different tasks.
While in a parameter-based approach, different tasks are linked
by sharing the same model parameters.

VI. CONCLUSION

This paper presents a metapath enhanced graph attention
encoder model for heterogeneous information networks repre-
sentation learning. Our proposed model, MEGAE, combines
metapath and graph encoder to learn both semantic infor-
mation and graph structural information in HINs. A variant
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of the graph attention network is employed to learn the
graph structural information by focusing on the most relevant
neighboring nodes. Further, we train MEGAE in a multitask
learning setting which is capable of doing different tasks
simultaneously while achieving better generalization perfor-
mance. Our approach uses predefined metapaths to capture
semantic meaning relations in HINs. To select meaningful
metapaths requires a lot of expert knowledge, so how to
automatically generate meaningful metapaths for different
HINs is an interesting problem to solve. In addition, our
model applies a uniform sampling method, other nonuniform
sampling methods could be a direction for future study.
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